Material characterization of curved shells under finite deformation using the virtual fields method

نویسندگان

چکیده

Although full-field measurement techniques have been well established, material characterization from these data remains challenging. Often, no closed-form solution exists between measured quantities and sought parameters. In this paper, a novel approach to determine the stiffness of thin curved membranes is proposed, based on virtual fields method (VFM). Utilizing Kirchhoff-Love shell theory, we show that displacements can be decomposed into an in-plane displacement rotation mid-surface shell. Consequently, strain tensor at outer surface then membrane bending part. This allows for VFM applied only surfaces arbitrary curvature. The first simulated data. It shown elastic modulus identified with less than 5% error if thickness Poisson ratio are known accurately. A uncertainty in either or changes value by 5%. Then, experimental acquired rubber samples having dome-like shape. Tensile tests performed same samples, which permits assess linearized Young's moderate strains (0–2.1%). Using regression analysis, 1.21 ± 0.08 MPa found. Next, pressurization eight shapes pressures up 4 kPa. average obtained 1.20 0.13 MPa. results good agreement ones tensile test. Future applications could benefit analyse more complex shapes, example those found biological structures like arteries eardrums.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Finite indentation of highly curved elastic shells

Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it...

متن کامل

Deformation and failure of curved colloidal crystal shells.

Designing and controlling particle self-assembly into robust and reliable high-performance smart materials often involves crystalline ordering in curved spaces. Examples include carbon allotropes like graphene, synthetic materials such as colloidosomes, or biological systems like lipid membranes, solid domains on vesicles, or viral capsids. Despite the relevance of these structures, the irrever...

متن کامل

Failure Modes of Perforated Material under Finite Deformation

Local deformation due to the interaction of small scale features such as voids or hard particles is expected to have a significant influence the failure mode of a material. To this end, the fracture pattern of a perforated aluminum sheet is studied experimentally and numerically using finite element models on two different length scales: a full-scale structural model and a local cell model base...

متن کامل

Functional Characterization of Deformation Fields

In this paper we present a novel representation for deformation fields of 3D shapes, by considering the induced changes in the underlying metric. In particular, our approach allows to represent a deformation field in a coordinate-free way as a linear operator acting on real-valued functions defined on the shape. Such a representation both provides a way to relate deformation fields to other cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Strain

سال: 2021

ISSN: ['1475-1305', '0039-2103']

DOI: https://doi.org/10.1111/str.12398